Probability 1

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Probability is the chance or likelihood that a particular outcome will occur, measured as a fraction of the total possible outcomes.

$$
\text { probability }=\frac{\text { favourable outcomes }}{\text { possible outcomes }}
$$

Examples

- tossing heads

- tossing heads	heads (H) tails (T)	$\frac{1}{2}$
- rolling a six		$\frac{1}{6}$
- stopping on purple		$\frac{1}{5}$
- getting a blue	$\frac{000}{00000000}$	$\frac{3}{8}$
- NOT getting a blue	$\frac{00000}{00000000}$	$\frac{5}{8}$
- getting red or blue	$\frac{00000000}{00000000}$	$\frac{8}{8}$

© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Probability 2

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

$$
\text { probability }=\frac{\text { favourable outcomes }}{\text { possible outcomes }}
$$

Probability range
The probability (chance or likelihood) that a particular outcome will occur ranges between 0 and 1 .

Probability line

Probability can be recorded on a probability line, ranging between 0 (impossible) and 1 (certain).

Educational reference material for non-commercial use only.

Probability - some terminology

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsolictionaryforkids.com
Probability is used to measure the chance or likelihood of an event or events occurring in the future.

Some terminology

Probability

$$
P(E)=\frac{E}{S}
$$

Probability experiment

Outcome

Event (E)
Denoted by capital letters A, B, C, ...

Sample space (S)

A number between 0 and 1 that indicates the chance or likelihood of an event happening.

$$
\therefore \text { Event } A=\text { Rolling a 6. } P(A)=\frac{1}{6}
$$

A situation where a number of trials are conducted to determine probability.

Rolling a die 24 times (24 trials).

Result of one trial in a probability experiment.
Roll 1 = 2 .
One or more favourable outcomes of a probability experiment. A subset of the sample space.

Set of all possible outcomes of any trial in a probability experiment.

$$
>\cdot \square \cdot \square \cdot \square
$$

One element of the sample space.

Outcomes with the same probability.

$$
>\cdot \frac{1}{6} \square \frac{1}{6} \because \frac{1}{6} \because \frac{1}{6} \because \frac{1}{6} \because \frac{1}{6}
$$

Complement of an event All outcomes that are not the event (\bar{E}).

Independent events
Dependent events

$$
P(\bar{E})=1-P(E) \quad \text { Event: } A \because \frac{1}{6} \bar{A} \square \because \circ \frac{5}{6} \frac{5}{6}=1-\frac{1}{6}
$$ Where the outcome of an event has no effect on the outcome of any further event(s).

Where the outcome of an event does have an effect on the outcome of any further event(s).

Sample Space

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Sample space is the set of all possible outcomes of any trial in a probability experiment.

Trial

		$S=\{H, T\}$
		$S=\{1,2,3,4,5,6\}$
	$P / G / B / R / Y$	$S=\{P, G, B, R, Y\}$
	-	$S=\{G, B\}$
2 counters	$\mathrm{S}=\{(\mathrm{G},$	$\text { i), (G,B), (B,G), (B,B) \} }$

Tree diagrams

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Tree diagrams use one branch for each possible outcome. The probability of each may be written on its branch.

Example 1

If you choose 1 burger, 1 side serve and 1 drink ... how many combinations (outcomes) are possible? burgers

- beef
- chicken side serves
- fish 1927 • fries
- salad
drinks

COLA \cdot cola \quad juice There are 12 possible outcomes.

Example 2

Two coin toss.

heads (H) tails (T) S = \{ HH,HT, TH, TT \}

Outcomes Probability
HH $\quad \frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
$\begin{array}{ll} & \frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \\ \text { HT } & \frac{1}{2} \times \frac{1}{2}=\frac{1}{4}\end{array}$

TT
$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
Multiply along the branches to determine the probability for each outcome.

Counting or multiplication principle

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
In probability, the counting or multiplication principle is a method that uses multiplication to work out the total number of possible outcomes or combinations.
The number of possibilities in one set of choices is multiplied by the number of possibilities in each other set of choices.

$$
\text { Example } 1
$$

When choosing 1 burger, 1 side serve and 1 drink ... how many combinations are possible?
burgers side serves

4 possibilities $x 2$ possibilities $x 4$ possibilities
Total outcomes $=4 \times 2 \times 4=32$
There are 32 possible combinations.

Example 2

When rolling 1 die once, spinning 1 spinner once and tossing 1 coin once ... how many combinations are possible?

6 possibilities $\times 5$ possibilities $\times 2$ possibilities
Total outcomes $=6 \times 5 \times 2=60$
There are 60 possible combinations.

© Jenny Eather. All rights reserved.

